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Abstracs. 1,1’-(o,0-Alkylidene)-2,2’ -dialkylglycerol tetracther lipid models (9) have been prepared by coupling
two equivalents of 1-(w-haloalkyl)-2-alkylglycerol diethers, through silver-catalyzed coupling of the Grignard
reageats 8 with iodide 7.

Archaebacterial tetracther lipids' have received considerable attention due to their unusual structure
and potential properties. In particular the cyclic 2,3’; 3,2’-bisbiphytanyl-di-sn-glycerol tetracthers 1 (R =
sugar, phosphate, nonitol, etc.), containing a 72-membered ring with 16 configurationally defined methyl
groups, have not yet been synthesized.
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Previous open-chain lipid tetraethers have been prepared primarily by modifications of the
Williamson ether synthesis, employing a,w-dibromoalkanes.’ Here we report a coupling strategy which we
have successfully applied to a simpler, known, acyclic, straight-chain tetracther model. We believe this
idea may be applicable to the more difficult task of assembling the cyclic tetracther.*

Scheme 1 outlines our coupling studies. BF, - OEt, catalyzed® reaction of rac-benzyl glycidyl
ether with hexamethylene chlorohydrin® 2a gave 5a in one step in 80% isolated yield. This sequence was
repeated using 16-chlorohexadecanol analogs. 16-Hydroxyhexadecanoic acid was converted to 16-chloro-
hexadecanoyl chloride and reduced without purification by alane’ to the 16-chloro alcohol 2b (94%). BF,-
catalyzed alcoholysis of (R)-glycidyl benzyl ether with the chlorohydrin gave the corresponding primary
ether, (S)-5b, in 86% yield.
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As an alternative route to 5, BF, catalyzed ring opening of rac-glycidyl tosylate with
hexamethylene chlorohydrin (2a) gave the ether-tosylate 3a in 80% yicld. Treatment with potassium
carbonate® gave 6-chlorohexyl glycidy! ether 4a (80%) which was opened regioselectively in a similar
manner with benzyl alcohol/BF, etherate to give the benzyl 6-chlorohexyl diether Sa (60%). This sequence
was also repeated using the 16-chlarohexadecanol analogs. BF;-catalyzed alcoholysis of (R)-glycidyl
tosylate’ with the chlorohydrin 2b gave the corresponding primary ether 3b in 85% yield. Ring closure
with base (80%) followed by ring opening with benzyl alcohol and BF; etherate (82%), as before, gave 3-
O-benzyl-1-0-(16-chlorohexadecyl)-sn-glycerol, diether (R)-(+)-5b in 82% yield.
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Alkylation of the free hydroxyl group of Sa with a-heptyl iodide in the presence of a catalytic
amount of tetra-n-butylammonium jodide™® afforded tricther 6a in 85% yield. The chloride was replaced by
iodide (7a, 95%), then dimerized to 9a (52%) using Kochi’s procedure:" one equivalent of iodide 7a was
converted to the Grignard reagent (8a) then coupled with-a second equivalent of jodide using "soluble
silver” catalyst.”” Similarly, Williamson coupling of the free secondary hydroxyl group of (R)-5b with
hexadecyl iodide gave triether Gb (99%). Again, conversion to the iodide (7b, 85%) and Kochi coupling
with Grignard reagent 8b (38%) gave the known™” 1,32-di-(3-benzyloxy-(2R)-2-hexadecyloxypropanoxy)-
dotridecane (9b). The overall yield of the benzyl protected sn-1,2-glycerol tetraether 9b for the 6 steps,
starting with the hydroxy acid 2b, was 25.9%. Considering the low yield coupling step, this reaction
sequence compares favorably with published .prooedures which employed the Williamson reaction
exclusively for acyclic tetraethers (9-15%). Itis worth noting the lengthy preparation of 1,32-
dibromodotridecane®'* required by the Williamson route. The overall yield of benzyl protected sn-2,3-
glycerol tetracther 9b for the 8 steps starting with the tosylate would be 16.7% using this route.

In conclusion, the method reported here allows the preparation of protected 1,2 or 2,3-sn-glycerol
tetracthers via BF,-catalyzed alcoholysis of glycidyl derivatives and Kochi-type coupling.' Attempts to
construct and couple appropriately substituted haloalkyl glycerol derivatives to form cyclic diglycerol
tetraethers are in progress. '
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